Combinatorics, 2016 Fall, USTC
 Outlines in Week 3

$\underline{2016.9 .20}$

Generating functions

- Definition. The (ordinary) generating function (or GF for short) for an infinity sequence a_{0}, a_{1}, \ldots is a power series

$$
f(x)=\sum_{n \geq 0} a_{n} x^{n}
$$

We have two ways to view the generating function.
(i). When the power series $\sum_{n \geq 0} a_{n} x^{n}$ converges (i.e., there exists a radius $R>0$ of convergence), we view G.F. as a function of x and we can apply operations of calculus on it, including differentiation and integration. For example, in this case we know that

$$
a_{n}=\frac{f^{(n)}(0)}{n!} .
$$

Also recall the following sufficient condition on the radius of convergence that if $\left|a_{n}\right| \leq K^{n}$ for some constant $K>0$, then $\sum_{n \geq 0} a_{n} x^{n}$ converges in the interval $\left(-\frac{1}{K}, \frac{1}{K}\right)$.
(ii). When we are not sure of the convergence, we view G.F. as a formal object with additions and multiplications. Let $a(x)=\sum_{n \geq 0} a_{n} x^{n}$ and $b(x)=\sum_{n \geq 0} b_{n} x^{n}$.

Addition.

$$
a(x)+b(x)=\sum_{n \geq 0}\left(a_{n}+b_{n}\right) x^{n} .
$$

Multiplication. Let $a(x) b(x)=\sum_{n \geq 0} c_{n} x^{n}$, where

$$
c_{n}=\sum_{i=0}^{n} a_{i} b_{n-i} .
$$

- $\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}$ holds for any real x with $|x|<1$. By the point view of (i), we can compute the derivatives of two sides to get more identities, i.e. the first derivative will give

$$
\frac{1}{(1-x)^{2}}=\sum_{k=1}^{\infty} k x^{k-1}
$$

- Problem 1. Let $a_{0}=1$ and $a_{n}=2 a_{n-1}$ for $n \geq 1$. Find a_{n}.

We let $f(x)=\sum a_{n} x^{n}$ be the generating function. Then we show $f(x)=1+2 x f(x)$,so $f(x)=\frac{1}{1-2 x}$, which implies that $f(x)=\sum 2^{n} x^{n}$ and therefore $a_{n}=2^{n}$.

- From the above problem, we see one of the basic ideas for using GF: in order to find the general expression of a_{n}, we work on its GF $f(x)$; once we find the formula of $f(x)$, then we can expand $f(x)$ into a power series and find a_{n} by choosing the coefficient of the right term.
- Recall the following facts:

Fact 1. If $f(x)=\prod_{i=1}^{k} f_{i}(x)$ for polynomials f_{1}, \ldots, f_{k}, then

$$
\left[x^{n}\right] f=\sum_{i_{1}+i_{2}+\ldots+i_{k}=n} \prod_{j=1}^{k}\left(\left[x^{i_{j}}\right] f_{j}\right) .
$$

Fact 2. For $j=1,2, \ldots, n$, let

$$
f_{j}(x):=\sum_{i \in I_{j}} x^{i}
$$

where I_{j} is a set containing nonnegative integers. Let $f(x)=f_{1} f_{2} \ldots f_{n}$ be the product.
Let b_{k} be the number of solutions to $i_{1}+i_{2}+\ldots+i_{n}=k$ with each $i_{j} \in I_{j}$. Then

$$
f(x)=\sum_{k=0}^{\infty} b_{k} x^{k} .
$$

- Problem 2. Let A_{n} be the set of strings of length n with entries from the set $\{a, b, c\}$ and with NO "aa" occuring (in the consecutive positions). Find $a_{n}=\left|A_{n}\right|$ for $n \geq 1$.
Sol: We first observe that $a_{1}=3, a_{2}=8$ and for any $n \geq 2$

$$
a_{n}=2 a_{n-1}+2 a_{n-2},
$$

therefore $a_{0}=1$. Let $f(x)=\sum_{n \geq 0} a_{n} x^{n}$. Then we use the recurrence relation to get

$$
f(x)=1+3 x+2 x(f(x)-1)+2 x^{2} f(x),
$$

which implies that

$$
f(x)=\frac{1+x}{1-2 x-2 x^{2}}
$$

By Partial Fraction Decomposition, we calculate that

$$
f(x)=\frac{1-\sqrt{3}}{2 \sqrt{3}} \frac{1}{\sqrt{3}+1+2 x}+\frac{1+\sqrt{3}}{2 \sqrt{3}} \frac{1}{\sqrt{3}-1-2 x}
$$

which implies that

$$
a_{n}=\frac{1-\sqrt{3}}{2 \sqrt{3}} \frac{1}{\sqrt{3}+1}\left(\frac{-2}{\sqrt{3}+1}\right)^{n}+\frac{1+\sqrt{3}}{2 \sqrt{3}} \frac{1}{\sqrt{3}-1}\left(\frac{2}{\sqrt{3}-1}\right)^{n} .
$$

Note that a_{n} must be an integer but its expression is of a combination of irrational terms! Observe that $\left|\frac{-2}{\sqrt{3}+1}\right|<1$, so $\left(\frac{-2}{\sqrt{3}+1}\right)^{n} \rightarrow 0$ as $n \rightarrow \infty$. Thus, when n is sufficiently large, a_{n} is about the value of the second term $\frac{1+\sqrt{3}}{2 \sqrt{3}} \frac{1}{\sqrt{3}-1}\left(\frac{2}{\sqrt{3}-1}\right)^{n}$; equivalently a_{n} will be the nearest integer to that.

- Definition. For any real r and integer $k \geq 0$, let

$$
\binom{r}{k}=\frac{r(r-1) \ldots(r-k+1)}{k!}
$$

- Newton's Binomial Theorem. For any real r,

$$
(1+x)^{r}=\sum_{k=0}^{\infty}\binom{r}{k} x^{k}
$$

holds for any $x \in(-1,1)$.
Pf: Taylor series.

- Corollary. Let $r=-n$ for integer $n \geq 0$. Then $\binom{-n}{k}=(-1)^{k}\binom{n+k-1}{k}$. Therefore

$$
(1+x)^{-n}=\sum_{k=0}^{\infty}(-1)^{k}\binom{n+k-1}{k} x^{k}
$$

- Problem 3. Let a_{n} be the number of ways to pay n Chinese Yuan using 1-Yuan bills, 2-Yuan bills and 5 -Yuan bills (assume there exist such bills). What is the generating function of this sequence $\left\{a_{n}\right\}$?
Sol: Observe that a_{n} corresponds to the number of integer solutions $\left(i_{1}, i_{2}, i_{3}\right)$ to
$i_{1}+i_{2}+i_{3}=n$, where $i_{1} \in I_{1}:=\{0,1,2, \ldots\}, i_{2} \in I_{2}:=\{0,2,4, \ldots\}$ and $i_{3} \in I_{3}:=\{0,5,10, \ldots\}$.
Let $f_{j}(x):=\sum_{m \in I_{j}} x^{m}$ for $j=1,2,3$. Then $f(x):=\prod_{1 \leq j \leq 3} f_{j}(x)$ is such that $\left[x^{n}\right] f=a_{n}$. That is, the generating function of $\left\{a_{n}\right\}$ is $f(x)=\frac{1}{1-x} \cdot \frac{1}{1-x^{2}} \cdot \frac{1}{1-x^{5}}$.

2016.9.20

Integer partition

- How many ways are there to write a natural number n as a sum of several natural numbers?
- The answer is not too difficult if we count ordered partitions of n. Here "ordered partition" means that we will view $1+1+2,1+2+1$ as two different partitions of 4 .
For $1 \leq k \leq n$, let a_{k} be the number of ordered partitions of n such that n is partitioned into k natural numbers. Then this counts the number of integer solutions to

$$
i_{1}+i_{2}+\ldots+i_{k}=n, \quad \text { where each } i_{j} \geq 1
$$

So $a_{k}=\binom{n-1}{k-1}$.
Therefore the total number of ordered partitions of n is $\sum_{1 \leq k \leq n}\binom{n-1}{k-1}=2^{n-1}$.

- We then consider the unordered partitions. For instance, we will view $1+2+3$ and $3+2+1$ as the same one.
Let p_{n} be the number of partitions of n in this sense.
Let n_{j} be the number of the j 's in such a partition of n. Then it holds that

$$
\sum_{j \geq 1} j \cdot n_{j}=n
$$

If we use i_{j} to express the contribution of the addends equal to j in a partition of n (i.e., $i_{j}=j \cdot n_{j}$), then

$$
\sum_{j \geq 1} i_{j}=n, \quad \text { where } \quad i_{j} \in\{0, j, 2 j, 3 j, \ldots\}
$$

Note that in the above summation, j can run from 1 to infinity, or run from 1 to n.
So p_{n} is the coefficient of x_{n} in the product

$$
P_{n}(x):=\left(1+x+x^{2}+\ldots\right)\left(1+x^{2}+x^{4}+\ldots\right) \ldots\left(1+x^{n}+x^{2 n}+\ldots\right)=\prod_{k=1}^{n} \frac{1}{1-x^{k}}
$$

- What is the generating function $P(x)$ of $\left\{p_{n}\right\}$ then?

As the index j in the summation can be viewed from 1 to $+\infty$, the generating function $P(x)$ is an infinite product of polynomials

$$
P(x)=\prod_{k=1}^{+\infty} \frac{1}{1-x^{k}}
$$

The Catalan number

- First let us recall the definition of $\binom{r}{k}$ for real number r and positive integer k, and the Newton's binomial Theorem. We obtained that

$$
\binom{\frac{1}{2}}{k}=\frac{(-1)^{k-1} 2}{4^{k}} \cdot \frac{(2 k-2)!}{k!(k-1)!} .
$$

- Let n-gon be a polygon with n corners, labelled as corner 1 , corner $2, \ldots$, corner n.
- Definition. A triangulation of the n-gon is a way to add lines between corners to make triangles such that these lines do not cross inside of the polygon.
- Let b_{n-1} be the number of triangulations of the n-gon, for $n \geq 3$. It is not hard to see that $b_{2}=1, b_{3}=2, b_{4}=5$. We want to find the general formula of b_{n}.
Consider the triangle T in a triangulation of n-gon which contains corners 1 and 2 . The triangle T should contain a third corner, say i. Since $3 \leq i \leq n$, we can divide the set of triangulations of n-gon into cases.

Case 1. If $i=3$ or n, the triangle T divides the n-gon into triangle T itself plus a ($n-1$)-gon, which results in b_{n-2} triangulations of n-gon.

Case 2. For $4 \leq i \leq n-1$, the triangle T divides the n-gon into three regions: a $(n-i+2)$ gon, triangle T and a ($i-1$)-gon, therefore it results in $b_{i-2} \times b_{n-i+1}$ many triangulations of n-gon. Therefore, combining Case 1 and 2 , we get that

$$
b_{n-1}=b_{n-2}+\sum_{i=4}^{n-1} b_{i-2} b_{n-i+1}+b_{n-2}=b_{n-2}+\sum_{j=2}^{n-3} b_{j} b_{n-j-1}+b_{n-2}
$$

By letting $b_{0}=0$ and $b_{1}=1$, we get

$$
b_{n-1}=\sum_{j=0}^{n-1} b_{j} b_{n-1-j} \quad \text { or } \quad b_{k}=\sum_{j=0}^{k} b_{j} b_{k-j} \quad \text { for } \quad k \geq 2 .
$$

Let $f(x)=\sum_{k \geq 0} b_{k} x^{k}$. Note that $f^{2}(x)=\sum_{k \geq 0}\left(\sum_{j=0}^{k} b_{j} b_{k-j}\right) x^{k}$. Therefore

$$
f(x)=x+\sum_{k \geq 2} b_{k} x^{k}=x+\sum_{k \geq 2}\left(\sum_{j=0}^{k} b_{j} b_{k-j}\right) x^{k}=x+\sum_{k \geq 0}\left(\sum_{j=0}^{k} b_{j} b_{k-j}\right) x^{k}=x+f^{2}(x) .
$$

Solving $f^{2}(x)-f(x)+x=0$, we get that $f(x)=\frac{1+\sqrt{1-4 x}}{2}$ or $\frac{1-\sqrt{1-4 x}}{2}$. But notice that $f(0)=0$, so it has to be the case that

$$
f(x)=\frac{1-\sqrt{1-4 x}}{2}
$$

Next, we apply the Newton's binomial theorem to get that

$$
f(x)=\frac{1}{2}-\frac{1}{2} \sum_{k \geq 0}\binom{\frac{1}{2}}{k}(-4 x)^{k}=\sum_{k \geq 1} \frac{(-1)^{k+1} 4^{k}}{2}\binom{\frac{1}{2}}{k} x^{k} .
$$

After plugging the obtained expression of $\binom{\frac{1}{2}}{k}=\frac{(-1)^{k-1} 2}{4^{k}} \cdot \frac{(2 k-2)!}{k!(k-1)!}$, we get that

$$
f(x)=\sum_{k \geq 1} \frac{(2 k-2)!}{k!(k-1)!} x^{k}=\sum_{k \geq 1} \frac{1}{k}\binom{2 k-2}{k-1} x^{k}
$$

Note that $f(x)$ is the generating function of $\left\{b_{k}\right\}$, therefore

$$
b_{k}=\frac{1}{k}\binom{2 k-2}{k-1}
$$

- Theorem. The total number of triangulations of the $(k+2)$-gon is $\frac{1}{k+1}\binom{2 k}{k}$, which is also called the $k^{\text {th }}$ Catalan number.

