
Combinatorics, 2016 Fall, USTC
Outlines in Week 3

2016.9.20

Generating functions

• Definition. The (ordinary) generating function (or GF for short) for an infinity sequence
a0, a1, ... is a power series

f(x) =
∑
n≥0

anx
n.

We have two ways to view the generating function.

(i). When the power series
∑

n≥0 anx
n converges (i.e., there exists a radius R > 0 of

convergence), we view G.F. as a function of x and we can apply operations of calculus on
it, including differentiation and integration. For example, in this case we know that

an =
f (n)(0)

n!
.

Also recall the following sufficient condition on the radius of convergence that if |an| ≤ Kn

for some constant K > 0, then
∑

n≥0 anx
n converges in the interval (− 1

K
, 1
K

).

(ii). When we are not sure of the convergence, we view G.F. as a formal object with
additions and multiplications. Let a(x) =

∑
n≥0 anx

n and b(x) =
∑

n≥0 bnx
n.

Addition.
a(x) + b(x) =

∑
n≥0

(an + bn)xn.

Multiplication. Let a(x)b(x) =
∑

n≥0 cnx
n, where

cn =
n∑

i=0

aibn−i.

• 1
1−x =

∑∞
k=0 x

k holds for any real x with |x| < 1. By the point view of (i), we can compute
the derivatives of two sides to get more identities, i.e. the first derivative will give

1

(1− x)2
=
∞∑
k=1

kxk−1.

• Problem 1. Let a0 = 1 and an = 2an−1 for n ≥ 1. Find an.

We let f(x) =
∑

anx
n be the generating function. Then we show f(x) = 1 + 2xf(x),so

f(x) = 1
1−2x , which implies that f(x) =

∑
2nxn and therefore an = 2n.
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• From the above problem, we see one of the basic ideas for using GF: in order to find the
general expression of an, we work on its GF f(x); once we find the formula of f(x), then
we can expand f(x) into a power series and find an by choosing the coefficient of the right
term.

• Recall the following facts:

Fact 1. If f(x) =
∏k

i=1 fi(x) for polynomials f1, ..., fk, then

[xn]f =
∑

i1+i2+...+ik=n

k∏
j=1

(
[xij ]fj

)
.

Fact 2. For j = 1, 2, ..., n, let

fj(x) :=
∑
i∈Ij

xi

where Ij is a set containing nonnegative integers. Let f(x) = f1f2...fn be the product.

Let bk be the number of solutions to i1 + i2 + ... + in = k with each ij ∈ Ij. Then

f(x) =
∞∑
k=0

bkx
k.

• Problem 2. Let An be the set of strings of length n with entries from the set {a, b, c} and
with NO “aa” occuring (in the consecutive positions). Find an = |An| for n ≥ 1.

Sol: We first observe that a1 = 3, a2 = 8 and for any n ≥ 2

an = 2an−1 + 2an−2,

therefore a0 = 1. Let f(x) =
∑

n≥0 anx
n. Then we use the recurrence relation to get

f(x) = 1 + 3x + 2x(f(x)− 1) + 2x2f(x),

which implies that

f(x) =
1 + x

1− 2x− 2x2
.

By Partial Fraction Decomposition, we calculate that

f(x) =
1−
√

3

2
√

3

1√
3 + 1 + 2x

+
1 +
√

3

2
√

3

1√
3− 1− 2x

,

which implies that

an =
1−
√

3

2
√

3

1√
3 + 1

(
−2√
3 + 1

)n

+
1 +
√

3

2
√

3

1√
3− 1

(
2√

3− 1

)n

.

Note that an must be an integer but its expression is of a combination of irrational terms!

Observe that
∣∣∣ −2√

3+1

∣∣∣ < 1, so
(
−2√
3+1

)n
→ 0 as n → ∞. Thus, when n is sufficiently large,

an is about the value of the second term 1+
√
3

2
√
3

1√
3−1

(
2√
3−1

)n
; equivalently an will be the

nearest integer to that.
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• Definition. For any real r and integer k ≥ 0, let(
r

k

)
=

r(r − 1)...(r − k + 1)

k!
.

• Newton’s Binomial Theorem. For any real r,

(1 + x)r =
∞∑
k=0

(
r

k

)
xk

holds for any x ∈ (−1, 1).

Pf: Taylor series.

• Corollary. Let r = −n for integer n ≥ 0. Then
(−n

k

)
= (−1)k

(
n+k−1

k

)
. Therefore

(1 + x)−n =
∞∑
k=0

(−1)k
(
n + k − 1

k

)
xk.

• Problem 3. Let an be the number of ways to pay n Chinese Yuan using 1-Yuan bills, 2-Yuan
bills and 5-Yuan bills (assume there exist such bills). What is the generating function of
this sequence {an}?
Sol: Observe that an corresponds to the number of integer solutions (i1, i2, i3) to

i1+i2+i3 = n, where i1 ∈ I1 := {0, 1, 2, ...}, i2 ∈ I2 := {0, 2, 4, ...} and i3 ∈ I3 := {0, 5, 10, ...}.

Let fj(x) :=
∑

m∈Ij x
m for j = 1, 2, 3. Then f(x) :=

∏
1≤j≤3 fj(x) is such that [xn]f = an.

That is, the generating function of {an} is f(x) = 1
1−x ·

1
1−x2 · 1

1−x5 .

2016.9.20

Integer partition

• How many ways are there to write a natural number n as a sum of several natural numbers?

• The answer is not too difficult if we count ordered partitions of n. Here “ordered partition”
means that we will view 1 + 1 + 2, 1 + 2 + 1 as two different partitions of 4.

For 1 ≤ k ≤ n, let ak be the number of ordered partitions of n such that n is partitioned
into k natural numbers. Then this counts the number of integer solutions to

i1 + i2 + ... + ik = n, where each ij ≥ 1.

So ak =
(
n−1
k−1

)
.

Therefore the total number of ordered partitions of n is
∑

1≤k≤n
(
n−1
k−1

)
= 2n−1.

3



• We then consider the unordered partitions. For instance, we will view 1+2+3 and 3+2+1
as the same one.

Let pn be the number of partitions of n in this sense.

Let nj be the number of the j’s in such a partition of n. Then it holds that∑
j≥1

j · nj = n.

If we use ij to express the contribution of the addends equal to j in a partition of n (i.e.,
ij = j · nj), then ∑

j≥1

ij = n, where ij ∈ {0, j, 2j, 3j, ...}.

Note that in the above summation, j can run from 1 to infinity, or run from 1 to n.

So pn is the coefficient of xn in the product

Pn(x) := (1 + x + x2 + ...)(1 + x2 + x4 + ...)...(1 + xn + x2n + ...) =
n∏

k=1

1

1− xk
.

• What is the generating function P (x) of {pn} then?

As the index j in the summation can be viewed from 1 to +∞, the generating function
P (x) is an infinite product of polynomials

P (x) =
+∞∏
k=1

1

1− xk
.

The Catalan number

• First let us recall the definition of
(
r
k

)
for real number r and positive integer k, and the

Newton’s binomial Theorem. We obtained that(
1
2

k

)
=

(−1)k−12

4k
· (2k − 2)!

k!(k − 1)!
.

• Let n-gon be a polygon with n corners, labelled as corner 1, corner 2,..., corner n.

• Definition. A triangulation of the n-gon is a way to add lines between corners to make
triangles such that these lines do not cross inside of the polygon.

• Let bn−1 be the number of triangulations of the n-gon, for n ≥ 3. It is not hard to see that
b2 = 1, b3 = 2, b4 = 5. We want to find the general formula of bn.

Consider the triangle T in a triangulation of n-gon which contains corners 1 and 2. The
triangle T should contain a third corner, say i. Since 3 ≤ i ≤ n, we can divide the set of
triangulations of n-gon into cases.
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Case 1. If i = 3 or n, the triangle T divides the n-gon into triangle T itself plus a (n−1)-gon,
which results in bn−2 triangulations of n-gon.

Case 2. For 4 ≤ i ≤ n−1, the triangle T divides the n-gon into three regions: a (n− i+2)-
gon, triangle T and a (i− 1)-gon, therefore it results in bi−2 × bn−i+1 many triangulations
of n-gon. Therefore, combining Case 1 and 2, we get that

bn−1 = bn−2 +
n−1∑
i=4

bi−2bn−i+1 + bn−2 = bn−2 +
n−3∑
j=2

bjbn−j−1 + bn−2

By letting b0 = 0 and b1 = 1, we get

bn−1 =
n−1∑
j=0

bjbn−1−j or bk =
k∑

j=0

bjbk−j for k ≥ 2.

Let f(x) =
∑

k≥0 bkx
k. Note that f 2(x) =

∑
k≥0

(∑k
j=0 bjbk−j

)
xk. Therefore

f(x) = x +
∑
k≥2

bkx
k = x +

∑
k≥2

(
k∑

j=0

bjbk−j

)
xk = x +

∑
k≥0

(
k∑

j=0

bjbk−j

)
xk = x + f 2(x).

Solving f 2(x) − f(x) + x = 0, we get that f(x) = 1+
√
1−4x
2

or 1−
√
1−4x
2

. But notice that
f(0) = 0, so it has to be the case that

f(x) =
1−
√

1− 4x

2
.

Next, we apply the Newton’s binomial theorem to get that

f(x) =
1

2
− 1

2

∑
k≥0

(
1
2

k

)
(−4x)k =

∑
k≥1

(−1)k+14k

2

(
1
2

k

)
xk.

After plugging the obtained expression of
( 1

2
k

)
= (−1)k−12

4k
· (2k−2)!
k!(k−1)! , we get that

f(x) =
∑
k≥1

(2k − 2)!

k!(k − 1)!
xk =

∑
k≥1

1

k

(
2k − 2

k − 1

)
xk.

Note that f(x) is the generating function of {bk}, therefore

bk =
1

k

(
2k − 2

k − 1

)
.

• Theorem. The total number of triangulations of the (k + 2)-gon is 1
k+1

(
2k
k

)
, which is also

called the kth Catalan number.
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