Combinatorics, 2016 Fall, USTC
Outlines in Week 3

2016.9.20

Generating functions

e Definition. The (ordinary) generating function (or GF for short) for an infinity sequence

ap, ai, ... 1S a power series
f(z) = g apx".
n>0
We have two ways to view the generating function.

(i). When the power series ). . a,z" converges (i.e., there exists a radius R > 0 of
convergence), we view G.F. as a function of x and we can apply operations of calculus on
it, including differentiation and integration. For example, in this case we know that

_ f"0)

n!

7

Also recall the following sufficient condition on the radius of convergence that if |a,| < K™
for some constant K > 0, then }_ -, a,z" converges in the interval (—%, %)
(ii). When we are not sure of the convergence, we view G.F. as a formal object with
additions and multiplications. Let a(z) =), S a,2" and b(z) = 3, 5o b,2".

Addition.
a(x) + b(x) = Z(an + by)z".

n>0

Multiplication. Let a(x)b(x) = }_, -, ca,z", where
Cp = Z aibn_i.
=0

o =37 2" holds for any real z with |z| < 1. By the point view of (i), we can compute
the derivatives of two sides to get more identities, i.e. the first derivative will give

1 = k—1
T
k=1

e Problem 1. Let ag = 1 and a,, = 2a,,—; for n > 1. Find a,,.

We let f(x) = > a,x™ be the generating function. Then we show f(z) = 1 + 2z f(x),s0
f(x) = —%~, which implies that f(z) = >_2"2" and therefore a,, = 2".

1-2z>



e From the above problem, we see one of the basic ideas for using GF': in order to find the
general expression of a,, we work on its GF f(x); once we find the formula of f(x), then
we can expand f(z) into a power series and find a,, by choosing the coefficient of the right
term.

e Recall the following facts:
Fact 1. If f(z) = Hle fi(z) for polynomials fi, ..., fx, then
k

f= Y TT(Y15)-

i1t+io+...+ig=n j=1

Fact 2. For j =1,2,...,n, let

where I; is a set containing nonnegative integers. Let f(x) = fi fo...f,, be the product.

Let b, be the number of solutions to 4 + i3 + ... +4,, = k with each i; € I;. Then
flz) = Z bra”.
k=0

e Problem 2. Let A, be the set of strings of length n with entries from the set {a, b, c} and
with NO “aa” occuring (in the consecutive positions). Find a,, = |A,| for n > 1.

Sol: We first observe that a; = 3,as = 8 and for any n > 2
ap = 20,1 + 2an—2a

therefore ag = 1. Let f(x) =) ., an,2™. Then we use the recurrence relation to get

flx) =143+ 2z(f(x) — 1) + 227 f(2),

which implies that
1+z2
1@ =, =5

By Partial Fraction Decomposition, we calculate that
13 1 1+/3 1
fle) = W3 VE+l+2e  2v3 VB-1-22
which implies that
1-v3 1 -2 \", 1+Vv3 1 2 \"
T ToE VBt (\/§+1) T VB (\/5—1) '

Note that a,, must be an integer but its expression is of a combination of irrational terms!

Observe that ‘\/gil‘ < 1, so (\/§<2H> — 0 as n — o0o. Thus, when n is sufficiently large,
1+v3 1

a, is about the value of the second term Z=%—=— ( \/327 1) ; equivalently a,, will be the

nearest integer to that.



e Definition. For any real r and integer £ > 0, let

<£) (- 1)...}3« —k+1)

e Newton’s Binomial Theorem. For any real r,

(1+a) = i (Da;’f

holds for any =z € (—1,1).
Pf: Taylor series.

e Corollary. Let r = —n for integer n > 0. Then (") = (—1)k("+k_1). Therefore

(1+a)™" = go(—mk(” * Z - 1)xk.

e Problem 3. Let a, be the number of ways to pay n Chinese Yuan using 1-Yuan bills, 2-Yuan
bills and 5-Yuan bills (assume there exist such bills). What is the generating function of
this sequence {a,}?

Sol: Observe that a,, corresponds to the number of integer solutions (i1, is,173) to

i1t+is+iz =n, where iy € I; :={0,1,2,...},is € Iy :={0,2,4,...} and i3 € I3:={0,5,10,...}.

Let fj(z) :=},er, @™ for j =1,2,3. Then f(z) =[] <;<; fj(2) is such that [2"]f = a,.

That is, the generating function of {a,} is f(z) = = - L5 -

l—z 11—z
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Integer partition

e How many ways are there to write a natural number n as a sum of several natural numbers?

e The answer is not too difficult if we count ordered partitions of n. Here “ordered partition”
means that we will view 1 4+ 1+ 2,1+ 2+ 1 as two different partitions of 4.
For 1 < k < n, let a;, be the number of ordered partitions of n such that n is partitioned
into k£ natural numbers. Then this counts the number of integer solutions to

i1+ 12+ ...+ =n, where each i; > 1.

So ax = (7).
Therefore the total number of ordered partitions of n is Y, <k<n (Zj) = n-1



e We then consider the unordered partitions. For instance, we will view 14+2+3 and 3+2+1
as the same one.

Let p,, be the number of partitions of n in this sense.
Let n; be the number of the j’s in such a partition of n. Then it holds that

Zj-nj:n.

j>1
If we use 7; to express the contribution of the addends equal to j in a partition of n (i.e.,
i; = j-n;), then
> ij=n, where i; €{0,5,2],3j,...}.

j>1
Note that in the above summation, 7 can run from 1 to infinity, or run from 1 to n.

So p,, is the coefficient of x,, in the product

1
11—k

Py(z):=(1+z+2"+.)1+2"+2' + ). (L+a"+2 +..) =[]
k=1

e What is the generating function P(z) of {p,} then?

As the index j in the summation can be viewed from 1 to 400, the generating function
P(z) is an infinite product of polynomials

The Catalan number

e First let us recall the definition of (2) for real number r and positive integer k, and the
Newton’s binomial Theorem. We obtained that

N (-2 (2k—2)!
(k)_ ARk — 1)

e Let n-gon be a polygon with n corners, labelled as corner 1, corner 2,..., corner n.

e Definition. A triangulation of the n-gon is a way to add lines between corners to make
triangles such that these lines do not cross inside of the polygon.

e Let b, 1 be the number of triangulations of the n-gon, for n > 3. It is not hard to see that
by =1,b3 =2,by = 5. We want to find the general formula of b,.

Consider the triangle 7" in a triangulation of n-gon which contains corners 1 and 2. The
triangle 7" should contain a third corner, say i. Since 3 < ¢ < n, we can divide the set of
triangulations of n-gon into cases.



Case 1. If i = 3 or n, the triangle T" divides the n-gon into triangle T itself plus a (n—1)-gon,
which results in b,,_, triangulations of n-gon.

Case 2. For 4 <1i < n—1, the triangle T" divides the n-gon into three regions: a (n—i+2)-
gon, triangle 7" and a (i — 1)-gon, therefore it results in b;_5 X b,_; 11 many triangulations
of n-gon. Therefore, combining Case 1 and 2, we get that

n—1 n—3
b1 =bp_o+ Z bi—obn_it1+byo =0, 2+ Z bibn—j—1+ b2
i=4 Jj=2

By letting by = 0 and b, = 1, we get

n—1 k
bn1= ijbn—l—j or b = ijbk_j for k> 2.
j=0

Jj=0

Let f(x) = Y50 bez®. Note that f2(z) =37, (Z?:o bjbk_j> x®. Therefore

—x+§:mx-—x+§:<zy%kaa:—x+§:<§:b@g>$'_$+ﬁ()

k>2 k>2 k>0 \j=0

. B IR Y v v B v :
Solving f2(z) — f(z) + = 0, we get that f(z) = =% or ©=Y,="%. But notice that
f(0) =0, so it has to be the case that

1—-+v1—-4x

fla) = =5

Next, we apply the Newton’s binomial theorem to get that

o=y (- S ()

k>0 k>1
After plugging the obtained expression of (%) = (713;;_12 . ,5!2(’2121))!!, we get that
J@) =2 mm=y® _Ejk k1)
k>1 k>1

Note that f(x) is the generating function of {b;}, therefore
, _ L(2% =2
TR\ k—1)

Theorem. The total number of triangulations of the (k + 2)-gon is
called the k" Catalan number.

1 (2k

yoy k), which is also



